SUMMARY REPORT 574 ELDERBERRY DRIVE (FORMERLY 459 ELDERBERRY DRIVE) LAUREL BAY MILITARY HOUSING AREA MARINE CORPS AIR STATION BEAUFORT BEAUFORT, SC

> Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid-Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

JUNE 2021

SUMMARY REPORT 574 ELDERBERRY DRIVE (FORMERLY 459 ELDERBERRY DRIVE) LAUREL BAY MILITARY HOUSING AREA MARINE CORPS AIR STATION BEAUFORT BEAUFORT, SC

> Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid- Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic

9324 Virginia Avenue Norfolk, Virginia 23511-3095 Prepared by:

CDM - AECOM Multimedia Joint Venture 10560 Arrowhead Drive, Suite 500 Fairfax, Virginia 22030

Contract Number: N62470-14-D-9016 CTO WE52 JUNE 2021

Table of Contents

1.0	INTRODUCTION	. 1
1.1 1.2	Background Information UST Removal and Assessment Process	
2.0	SAMPLING ACTIVITIES AND RESULTS	. 3
	UST REMOVAL AND SOIL SAMPLING Soil Analytical Results	
3.0	PROPERTY STATUS	. 4
4.0	REFERENCES	. 4

Table

Table 1	Laboratory	Analytical	Results - Soil
	Laboratory	ranaryticar	Results Soll

Appendices

- Appendix A Multi-Media Selection Process for LBMH
- Appendix B UST Assesment Report
- Appendix C Regulatory Correspondence

List of Acronyms

bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and xylenes
СТО	Contract Task Order
COPC	constituents of potential concern
IDIQ	Indefinite Delivery, Indefinite Quantity
IGWA	Initial Groundwater Assessment
JV	Joint Venture
LBMH	Laurel Bay Military Housing
MCAS	Marine Corps Air Station
NAVFAC Mid-Lant	Naval Facilities Engineering Command Mid-Atlantic
NFA	No Further Action
PAH	polynuclear aromatic hydrocarbon
QAPP	Quality Assurance Program Plan
RBSL	risk-based screening level
SCDHEC	South Carolina Department of Health and Environmental Control
Site	LBMH area at MCAS Beaufort, South Carolina
UST	underground storage tank
VISL	vapor intrusion screening level

1.0 INTRODUCTION

The CDM - AECOM Multimedia Joint Venture (JV) was contracted by the Naval Facilities Engineering Command, Mid-Atlantic (NAVFAC Mid-Lant) to provide reporting services for the heating oil underground storage tanks (USTs) located in Laurel Bay Military Housing (LBMH) area at the Marine Corps Air Station (MCAS) Beaufort, South Carolina (Site). This work has been awarded under Contract Task Order (CTO) WE52 of the Indefinite Delivery, Indefinite Quantity (IDIQ) Multimedia Environmental Compliance Contract (Contract No. N62470-14-D-9016).

As of January 2014, the LBMH addresses were re-numbered to comply with the E-911 emergency response addressing system; however, in order to remain consistent with historical sampling and reporting for LBMH area, the residences will continue to be referenced with their original address numbers in sample nomenclature and reporting documents.

This report summarizes the results the environmental investigation activities associated with the storage of home heating oil and the potential release of petroleum constituents at the referenced property. Based on the results of the investigation, a No Further Action (NFA) determination has been made by the South Carolina Department of Health and Environmental Control (SCDHEC) for 574 Elderberry Drive (Formerly 459 Elderberry Drive). This NFA determination indicates that there are no unacceptable risks to human health or the environment for the petroleum constituents associated with the home heating oil USTs. The following information is included in this report:

- Background information;
- Sampling activities and results; and
- A determination of the property status.

1.1 Background Information

The LBMH area is located approximately 3.5 miles west of MCAS Beaufort. The area is approximately 970 acres in size and serves as an enlisted and officer family housing area. The area is configured with single family and duplex residential structures, and includes recreation, open space, and community facilities. The community includes approximately 1,300 housing units, including legacy Capehart style homes and newer duplex style homes. The housing area

is bordered on the west by salt marshes and the Broad River, and to the north, east and south by uplands. Forested areas lie along the northern and northeastern borders.

Capehart style homes within the LBMH area were formerly heated using heating oil stored in USTs at each residence. There were 1,100 Capehart style housing units in the LBMH area. The newer duplex homes within the LBMH area never utilized heating oil tanks. Heating oil has not been used at Laurel Bay since the mid-1980s. As was the accepted practice at the time, USTs were drained, filled with dirt, capped, and left in place when they were removed from service. Residential USTs are not regulated in the State of South Carolina (i.e., there are no federal or state laws governing installation, management, or removal).

In 2007, MCAS Beaufort began a voluntary program to remove the unregulated, residential USTs and conduct sampling activities to determine if, and to what extent, petroleum constituents may have impacted the surrounding environment. MCAS Beaufort coordinated with SCDHEC to develop removal procedures that were consistent with procedural requirements for regulated USTs. All tank removal activities and follow-on actions are conducted in coordination with SCDHEC. To date, all known USTs have been removed from all residential properties within the LBMH area.

1.2 UST Removal and Assessment Process

During the UST removal process, a soil sample was collected from beneath the UST excavations (approximately 4 to 6 feet [ft] below ground surface [bgs]) and analyzed for a predetermined list of constituents of potential concern (COPCs) associated with the petroleum compounds found in home heating oil. These COPCs, derived from the *Quality Assurance Program Plan (QAPP) for the Underground Storage Tank Management Division, Revision 3.1* (SCDHEC, 2016) and the *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service,* (SCDHEC, 2018), are as follows:

- benzene, toluene, ethylbenzene, and xylenes (BTEX),
- naphthalene, and
- five select polynuclear aromatic hydrocarbon (PAHs): benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene and dibenz(a,h)anthracene.

Soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form. In accordance with SCDHEC's *QAPP for the UST Management*

Division (SCDHEC, 2016), the soil screening levels consists of SCDHEC risk-based screening levels (RBSLs). It should be noted that the RBSLs for select PAHs were revised in Revision 2.0 of the OAPP (SCDHEC, 2013) and were revised again in Revision 3.0 (SCDHEC, 2015). The screening levels used for evaluation at each site were those levels that were in effect at the time of reporting and review by SCDHEC.

The results of the soil sampling at each former UST location were used to determine if a potential for groundwater contamination exists (i.e., soil results greater than RBSLs) and subsequently to select properties for follow-up initial groundwater assessment (IGWA) sampling. The results of the IGWA sampling (if necessary) are used to determine the presence or absence of the aforementioned COPCs in groundwater and identify whether former UST locations will require additional delineation of COPCs in groundwater. In order to delineate the extent of impact to groundwater, permanent wells are installed and a sampling program is established for those former UST locations where IGWA sampling has indicated the presence of COPCs in excess of the SCDHEC RBSLs for groundwater. Groundwater analytical results are also compared to the site specific groundwater vapor intrusion screening levels (VISLs) to evaluate the potential for vapor intrusion and the necessity for an investigation associated with this media. A multi-media investigation selection process tree, applicable to the LBMH UST investigations, is presented as Appendix A.

2.0 SAMPLING ACTIVITIES AND RESULTS

The following section presents the sampling activities and associated results for 574 Elderberry Drive (Formerly 459 Elderberry Drive). Details regarding the soil investigation at this site are provided in the *SCDHEC UST Assessment Report – 459 Elderberry Drive* (MCAS Beaufort, 2015). The UST Assessment Report is provided in Appendix B.

2.1 UST Removal and Soil Sampling

On July 28, 2015 a single 280 gallon heating oil UST was removed from the landscaped area adjacent to the concrete patio at 574 Elderberry Drive (Formerly 459 Elderberry Drive). The former UST location is indicated on Figures 1 and 2 of the UST Assessment Report (Appendix B). The UST was removed and properly disposed of (i.e., shipped offsite for recycling or transported to a landfill). There was no visual evidence (i.e., staining or sheen) of petroleum impact at the time of the UST removal. According to the UST Assessment Report (Appendix B), the depth to the base of the UST was 5'6" bgs and a single soil sample was collected from that

depth. The sample was collected from the fill port side of the former UST to represent a worst case scenario.

Following UST removal, a soil sample was collected from the base of the excavation and shipped to an offsite laboratory for analysis of the petroleum COPCs. Sampling was performed in accordance with applicable South Carolina regulation R.61-92, Part 280 (SCDHEC, 2017) and assessment guidelines.

2.2 Soil Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 1. A copy of the laboratory analytical data report is included in the UST Assessment Report presented in Appendix B. The laboratory analytical data report includes the soil results for the additional PAHs that were analyzed, but do not have associated RBSLs.

The soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form (Appendix B). The results of the soil sampling at the former UST location were used by MCAS Beaufort, in consultation with SCDHEC, to determine a path forward (i.e., additional sampling or NFA) for the property. The soil results collected from 574 Elderberry Drive (Formerly 459 Elderberry Drive) were less than the SCDHEC RBSLs, which indicated the subsurface was not impacted by COPCs associated with the former UST at concentrations that presented a potential risk to human health and the environment.

3.0 PROPERTY STATUS

Based on the analytical results for soil, SCDHEC made the determination that NFA was required for 574 Elderberry Drive (Formerly 459 Elderberry Drive). This NFA determination was obtained in a letter dated August 3, 2016. SCDHEC's NFA letter is provided in Appendix C.

4.0 REFERENCES

- Marine Corps Air Station Beaufort, 2015. *South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank Assessment Report 459 Elderberry Drive, Laurel Bay Military Housing Area*, November 2015.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2013. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 2.0*, April 2013.

- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2015. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.0*, May 2015.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2016. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.1*, February 2016.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2017. *R.61-92, Part 280, Underground Storage Tank Control Regulations*, March 2017.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2018. Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service, March 2018.

Table

Table 1Laboratory Analytical Results - Soil574 Elderberry Drive (Formerly 459 Elderberry Drive)Laurel Bay Military Housing AreaMarine Corps Air Station BeaufortBeaufort, South Carolina

Constituent	SCDHEC RBSLs ⁽¹⁾	Results Sample Collected 07/28/1	
Volatile Organic Compounds Analyz	ed by EPA Method 8260B (mg/kg)		
Benzene	0.003	ND	
Ethylbenzene	1.15	ND	
Naphthalene	0.036	ND	
Toluene	0.627	ND	
Xylenes, Total	13.01	ND	
Semivolatile Organic Compounds A	nalyzed by EPA Method 8270D (mg/kg)		
Benzo(a)anthracene	0.66	0.0289	
Benzo(b)fluoranthene	0.66	0.0714	
Benzo(k)fluoranthene	0.66	0.0247	
Chrysene	0.66	0.0526	
Dibenz(a,h)anthracene	0.66	ND	

Notes:

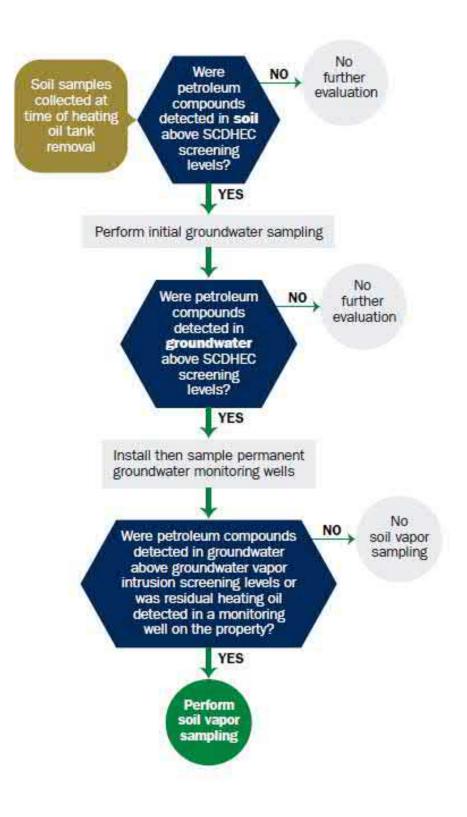
⁽¹⁾ South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 3.0 and 3.1 (SCDHEC, May 2015 and SCDHEC, February 2016) and the Underground Storage Tank Assessment Guidelines (SCDHEC, February 2006).

Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL.

EPA - United States Environmental Protection Agency

mg/kg - milligram per kilogram


ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The laboratory report is provided in Appendix B.

RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control

Appendix A Multi-Media Selection Process for LBMH

Appendix A - Multi-Media Selection Process for LBMH

Appendix B UST Assessment Report

Attachment 1

South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank (UST) Assessment Report

Date Received				
	State U	se Only		

Submit Completed Form To: UST Program SCDHEC 2600 Bull Street Columbia, South Carolina 29201 Telephone (803) 896-7957

I. OWNERSHIP OF UST (S)

	Commanding Officer Attr	
Owner Name (Corpor	ation, Individual, Public Agency, Ot	ner)
P.O. Box 5500	1	
Mailing Address		
Beaufort,	South Carolin	
City	State	Zip Code
843	228-7317	Craig Ehde
Area Code	Telephone Number	Contact Person

II. SITE IDENTIFICATION AND LOCATION

Permit I.D. #	
Laurel Bay Milita	y Housing Area, Marine Corps Air Station, Beaufort, SC
Facility Name or Company	Site Identifier
459 Elderberry Dr Street Address or State Roa	ive, Laurel Bay Military Housing Area
Suborriduoso or Bland red	
Beaufort,	Beaufort
City	County

Attachment 2

III. INSURANCE INFORMATION

Insurance Statement

The petroleum release reported to DHEC on ______ at Permit ID Number _____ may qualify to receive state monies to pay for appropriate site rehabilitation activities. Before participation is allowed in the State Clean-up fund, written confirmation of the existence or non-existence of an environmental insurance policy is required. This section must be completed.

Is there now, or has there ever been an insurance policy or other financial mechanism that covers this UST release? YES____ NO____ (check one)

If you answered **YES** to the above question, please complete the following information:

My policy provider is: _____ The policy deductible is: _____ The policy limit is:

If you have this type of insurance, please include a copy of the policy with this report.

IV. REQUEST FOR SUPERB FUNDING

1 DO / DO NOT wish to participate in the SUPERB Program. (Circle one.)

V. CERTIFICATION (To be signed by the UST owner)

I certify that I have personally examined and am familiar with the information submitted in this and all attached documents; and that based on my inquiry of those individuals responsible for obtaining this information, I believe that the submitted information is true, accurate, and complete.

Name (Type or print.)

Signature

To be completed by Notary Public:

Sworn before me this _____ day of _____, 20____

(Name)

Notary Public for the state of ______. Please affix State seal if you are commissioned outside South Carolina

VI. UST	INFORMATION	
---------	-------------	--

	Elderberry
Product(ex. Gas, Kerosene)	Heating oil
Capacity(ex. 1k, 2k)	280 gal
Age	Late 1950s
Construction Material(ex. Steel, FRP)	Steel
Month/Year of Last Use	Mid 1980s
Depth (ft.) To Base of Tank	5'6"
Spill Prevention Equipment Y/N	No
Overfill Prevention Equipment Y/N	No
Method of Closure Removed/Filled	Removed
Date Tanks Removed/Filled	7/28/2015
Visible Corrosion or Pitting Y/N	Yes
Visible Holes Y/N	Yes
	Capacity(ex. 1k, 2k)AgeAgeConstruction Material(ex. Steel, FRP)Month/Year of Last UseDepth (ft.) To Base of TankDepth (ft.) To Base of TankSpill Prevention Equipment Y/NOverfill Prevention Equipment Y/NMethod of Closure Removed/FilledDate Tanks Removed/FilledVisible Corrosion or Pitting Y/N

459

M. Method of disposal for any USTs removed from the ground (attach disposal manifests) <u>UST 459Elderberry was removed from the ground and disposed at a</u> Subtitle "D" landfill. See Attachment "A".

N. Method of disposal for any liquid petroleum, sludges, or wastewaters removed from the USTs (attach disposal manifests)
 UST 459Elderberry had been previously filled with sand by others.

O. If any corrosion, pitting, or holes were observed, describe the location and extent for each UST <u>Corrosion</u>, pitting and holes were found throughout the tank.

VII. PIPING INFORMATION

		459 Elderberry
		Steel
Α.	Construction Material(ex. Steel, FRP)	& Copper
B.	Distance from UST to Dispenser	N/A
C.	Number of Dispensers	N/A
D.	Type of System Pressure or Suction	Suction
E.	Was Piping Removed from the Ground? Y/N	Yes
F.	Visible Corrosion or Pitting Y/N	Yes
G.	Visible Holes Y/N	No
H.	Age	Late 1950s
I.	If any corrosion, pitting, or holes were observed,	describe the location and extent for each piping run.

Corrosion and pitting were found on the surface of the steel vent pipe. Copper supply and return lines were sound.

VIII. BRIEF SITE DESCRIPTION AND HISTORY

The USTs at the residences are constructed of single wall steel and formerly contained fuel oil for heating. These USTs were installed in the late 1950s and last used in the mid 1980s.

IX. SITE CONDITIONS

	Yes	No	Unk
A. Were any petroleum-stained or contaminated soils found in the UST excavation, soil borings, trenches, or monitoring wells?		x	
If yes, indicate depth and location on the site map.		Ľ.	
B. Were any petroleum odors detected in the excavation, soil borings, trenches, or monitoring wells?		х	
If yes, indicate location on site map and describe the odor (strong, mild, etc.)			
C. Was water present in the UST excavation, soil borings, or trenches?		X	
If yes, how far below land surface (indicate location and depth)?			
D. Did contaminated soils remain stockpiled on site after closure?		Х	
If yes, indicate the stockpile location on the site map.			
Name of DHEC representative authorizing soil removal:			
E. Was a petroleum sheen or free product detected on any excavation or boring waters?		x	
If yes, indicate location and thickness.			

X. SAMPLE INFORMATION

A. SCDHEC Lab Certification Number 84009

B.

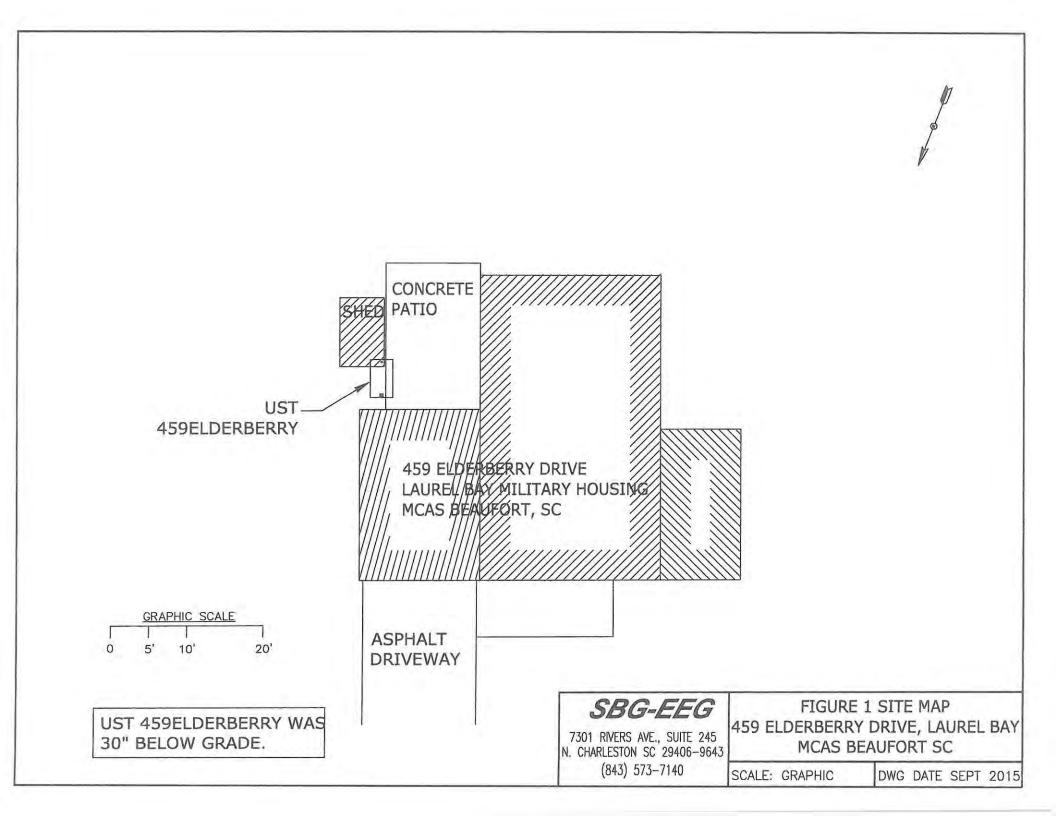
Sample #	Location	Sample Type (Soil/Water)	Soil Type (Sand/Clay)	Depth*	Date/Time of Collection	Collected by	OVA #
59 Elderb'y	Excav at fill end	Soil	Sandy	5'6"	7/28/15 1315 hrs	P. Shaw	
8							
9							
10							
11							
12							
13							
14				1			
15							
16							
17							
18							
19							
20							

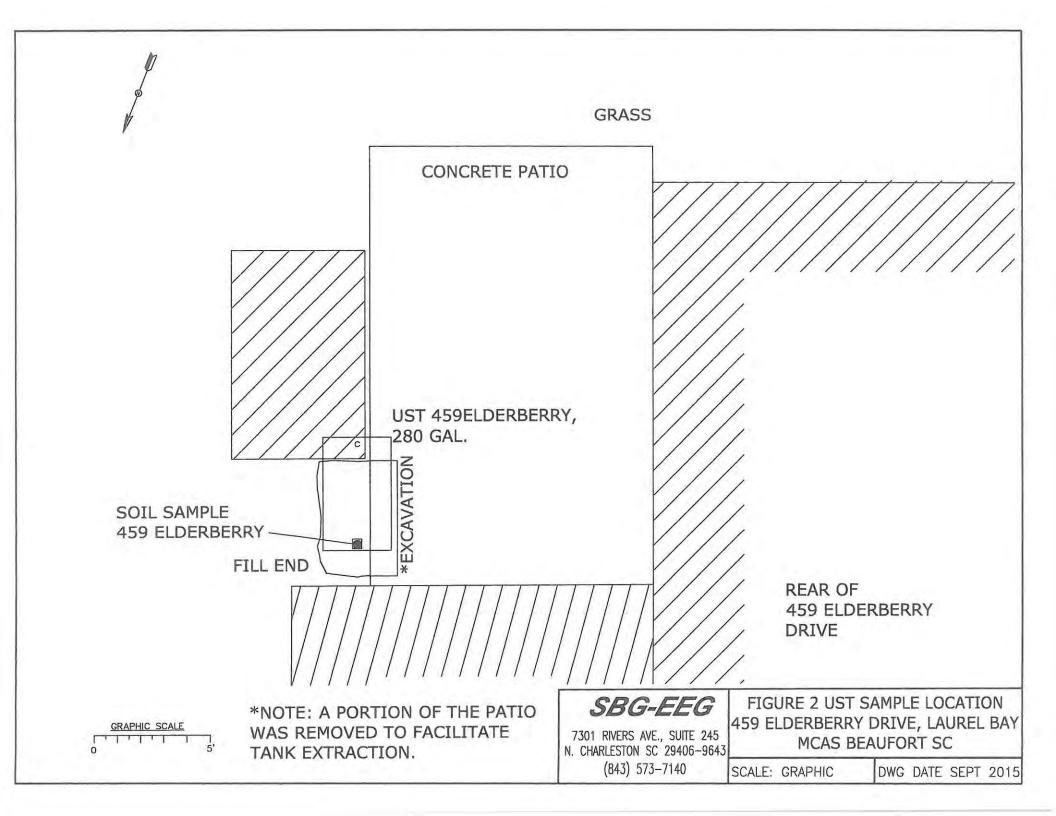
* = Depth Below the Surrounding Land Surface

XI. SAMPLING METHODOLOGY

Provide a detailed description of the methods used to collect <u>and</u> store the samples. Also include the preservative used for each sample. Please use the space provided below.

Sampling was performed in accordance with SC DHEC R.61-92 Part 280 and SC DHEC Assessment Guidelines. Sample containers were prepared by the testing laboratory. The grab method was utilized to fill the sample containers leaving as little head space as possible and immediately capped. Soil samples were extracted from area below tank. The samples were marked, logged, and immediately placed in a sample cooler packed with ice to maintain an approximate temperature of 4 degrees Centigrade. Tools were thoroughly cleaned and decontaminated with the seven step decon process after each use. The samples remained in custody of SBG-EEG, Inc. until they were transferred to Test America Incorporated for analysis as documented in the Chain of Custody Record.


XII. RECEPTORS


		Yes	No
Α.	Are there any lakes, ponds, streams, or wetlands located within 1000 feet of the UST system?		X
	If yes, indicate type of receptor, distance, and direction on site map.		
B.	Are there any public, private, or irrigation water supply wells within 1000 feet of the UST system?		x
	If yes, indicate type of well, distance, and direction on site map.		
C.	Are there any underground structures (e.g., basements) Located within 100 feet of the UST system?		x
	If yes, indicate type of structure, distance, and direction on site map.		
D.	Are there any underground utilities (e.g., telephone, electricity, gas, water, sewer, storm drain) located within 100 feet of the UST system that could potentially come in contact with the contamination? *Sewer, water, electric	*X	
	cable, fiber optic & ge If yes, indicate the type of utility, distance, and direction on the site map.	eothe	rmal
E.	Has contaminated soil been identified at a depth less than 3 feet below land surface in an area that is not capped by asphalt or concrete?		X
	If yes, indicate the area of contaminated soil on the site map.		

XIII. SITE MAP

You must supply a <u>scaled</u> site map. It should include all buildings, road names, utilities, tank and dispenser island locations, labeled sample locations, extent of excavation, and any other pertinent information.

(Attach Site Map Here)

Picture 1: Location of UST 459Elderberry.

Picture 2: UST 459Elderberry excavation in progress.

Picture 3: Tank pit.

Picture 4: Site after completion of work.

XIV. SUMMARY OF ANALYSIS RESULTS

Enter the soil analytical data for each soil boring for all COC in the table below and on the following page.

CoC UST	459Elderberr	Y		
Benzene	ND			
Toluene	ND			
Ethylbenzene	ND			
Xylenes	ND			
Naphthalene	ND			
Benzo (a) anthracene	0.0289 mg/kg			
Benzo (b) fluoranthene	0.0714 mg/kg			
Benzo (k) fluoranthene	0.0247 mg/kg			
Chrysene	0.0526 mg/kg			
Dibenz (a, h) anthracene	ND			
ТРН (ЕРА 3550)				
CoC				
Benzene				3
Toluene				
Ethylbenzene				
Xylenes				
Naphthalene				
Benzo (a) anthracene				
Benzo (b) fluoranthene				
Benzo (k) fluoranthene				
Chrysene				
Dibenz (a, h) anthracene				
TPH (EPA 3550)				

SUMMARY OF ANALYSIS RESULTS (cont'd) Enter the ground water analytical data for each sample for all CoC in the table below. If free product is present, indicate the measured thickness to the nearest 0.01 feet.

CoC	RBSL (µg/I)	W-1	W-2	W -3	W -4
Free Product Thickness	None				
Benzene	5				
Toluene	1,000				
Ethylbenzene	700				
Xylenes	10,000			1.5	
Total BTEX	N/A				
MTBE	40				
Naphthalene	25				
Benzo (a) anthracene	10				
Benzo (b) flouranthene	10				
Benzo (k) flouranthene	10				
Chrysene	10	1			
Dibenz (a, h) anthracene	10				
EDB	.05				
1,2-DCA	5				
Lead	Site specific				

XV. ANALYTICAL RESULTS

You must submit the laboratory report and chain-of-custody form for the samples. These samples must be analyzed by a South Carolina certified laboratory.

(Attach Certified Analytical Results and Chain-of-Custody Here) (Please see Form #4)

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories. Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-84152-1

Client Project/Site: Laurel Bay Housing Project Revision: 1

For:

..... LINKS

Review your project results through

Have a Question?

www.testamericainc.com

Ask

he

Expert

229

Total A

Visit us at:

Small Business Group Inc. 10179 Highway 78 Ladson, South Carolina 29456

Attn: Tom McElwee

Kuth Hage

Authorized for release by: 8/27/2015 12:36:07 PM

Ken Hayes, Project Manager II (615)301-5035 ken.hayes@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions	5
Client Sample Results	6
QC Sample Results	Э
QC Association	17
Chronicle	19
Method Summary	20
Certification Summary	21
	22
Receipt Checklists	24

Sample Summary

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project

8

Lab Sample ID	Client Sample ID	Matrix	Collected Received
490-84152-1	1220 Cardinal	Soil	07/27/15 13:45 08/01/15 08:45
490-84152-2	459 Elderberry	Soil	07/28/15 13:15 08/01/15 08:45
490-84152-3	1332 Albatross	Soil	07/29/15 11:45 08/01/15 08:45

TestAmerica Nashville

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project

Job ID: 490-84152-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-84152-1

REVISED REPORT: Revised to correct the sample time for 1332 Albatross (490-84152-3) from 14:45 to 11:45 as listed on the Chain of Custody. This report replaces the one generated on 08/07/15 @ 1639.

Comments No additional comments.

Receipt

The samples were received on 8/1/2015 8:45 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.6° C.

GC/MS VOA

Method(s) 8260B: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with analytical batch 490-270885.

Method(s) 8260B: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with analytical batch 490-271208.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project

5

Qualifiers

GC/MS Semi VOA

Q	uali	fier
T	9.1	-5

Qualifier Description
 Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL.	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project

Client Sample ID: 1220 Cardinal

Date Collected: 07/27/15 13:45 Date Received: 08/01/15 08:45

Method: 8260B - Volatile Organic Compounds (GC/MS)

Method: 8260B - Volatile C	organic Compo	unds (GC/	MS)						
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00252	0.000843	mg/Kg	4	07/27/15 13:45	08/05/15 23:53	1
Ethylbenzene	ND		0.00252	0.000843	mg/Kg	0	07/27/15 13:45	08/05/15 23:53	1
Naphthalene	ND		0.00629	0.00214	mg/Kg	Ŷ	07/27/15 13:45	08/05/15 23:53	1
Toluene	ND		0.00252	0.000931	mg/Kg	\$	07/27/15 13:45	08/05/15 23:53	1
Xylenes, Total	ND		0.00629	0.00155	mg/Kg	\$	07/27/15 13:45	08/05/15 23:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		70 - 130				07/27/15 13:45	08/05/15 23:53	1
4-Bromofluorobenzene (Surr)	101		70 - 130				07/27/15 13:45	08/05/15 23:53	1
Dibromofluoromethane (Surr)	99		70 - 130				07/27/15 13:45	08/05/15 23:53	1
Toluene-d8 (Surr)	97		70 - 130				07/27/15 13:45	08/05/15 23:53	1
Method: 8270D - Semivola	tile Organic Co	mpounds	(GC/MS)						
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0909	0.0136	mg/Kg	*	08/04/15 11:17	08/06/15 20:36	1
Acenaphthylene	ND		0.0909	0.0122	mg/Kg	\$	08/04/15 11:17	08/06/15 20:36	1
Anthracene	ND		0.0909	0.0122	mg/Kg		08/04/15 11:17	08/06/15 20:36	1
Benzo[a]anthracene	ND		0.0909	0.0204	mg/Kg	01	08/04/15 11:17	08/06/15 20:36	1
Benzo[a]pyrene	ND		0.0909	0.0163	mg/Kg	¢	08/04/15 11:17	08/06/15 20:36	1
Benzo[b]fluoranthene	ND		0.0909	0.0163	mg/Kg	2	08/04/15 11:17	08/06/15 20:36	1
Benzo[g,h,i]perylene	ND		0.0909	0.0122	mg/Kg	\$	08/04/15 11:17	08/06/15 20:36	1
Benzo[k]fluoranthene	ND		0.0909	0.0190	mg/Kg	¢.	08/04/15 11:17	08/06/15 20:36	1
1-Methylnaphthalene	ND		0.0909	0.0190	mg/Kg	\$	08/04/15 11:17	08/06/15 20:36	1
Pyrene	ND		0.0909	0.0163	mg/Kg	\$	08/04/15 11:17	08/06/15 20:36	1
Phenanthrene	ND		0.0909	0.0122	mg/Kg	-22	08/04/15 11:17	08/06/15 20:36	1
Chrysene	ND		0.0909	0.0122	mg/Kg	5	08/04/15 11:17	08/06/15 20:36	1
Dibenz(a,h)anthracene	ND		0.0909	0.00950	mg/Kg	4	08/04/15 11:17	08/06/15 20:36	1
Fluoranthene	ND		0.0909	0.0122	mg/Kg	\$	08/04/15 11:17	08/06/15 20:36	1
Fluorene	ND		0.0909	0.0163	mg/Kg	\$	08/04/15 11:17	08/06/15 20:36	1
Indeno[1,2,3-cd]pyrene	ND		0.0909	0.0136	mg/Kg	\rightarrow	08/04/15 11:17	08/06/15 20:36	1
Naphthalene	ND		0.0909	0.0122	mg/Kg	¢	08/04/15 11:17	08/06/15 20:36	1
2-Methylnaphthalene	ND		0.0909	0.0217	mg/Kg	÷	08/04/15 11:17	08/06/15 20:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	60		29-120				08/04/15 11:17	08/06/15 20:36	1
Terphenyl-d14 (Surr)	74		13-120				08/04/15 11:17	08/06/15 20:36	1
Nitrobenzene-d5 (Surr)	59		27 - 120				08/04/15 11:17	08/06/15 20:36	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	73		0.10	0.10	%		0.00	08/04/15 16:21	1

Lab Sample ID: 490-84152-1 Matrix: Soil

6

TestAmerica Nashville

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project

Client Sample ID: 459 Elderberry

Date Collected: 07/28/15 13:15 Date Received: 08/01/15 08:45

Mathead BOCOD Malatin

Lab Sample ID: 490-84152-2 Matrix: Soil

Method: 8260B - Volatile C	Organic Compo	unds (GC)	/MS)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00218	0.000730	mg/Kg	¢	07/28/15 13:15	08/06/15 00:23	ī
Ethylbenzene	ND		0.00218	0.000730	mg/Kg	4	07/28/15 13:15	08/06/15 00:23	1
Naphthalene	ND		0.00545	0.00185	mg/Kg	¢	07/28/15 13:15	08/06/15 00:23	1
Toluene	ND		0.00218	0.000806	mg/Kg	\$	07/28/15 13:15	08/06/15 00:23	1
Xylenes, Total	ND		0.00545	0.00134	mg/Kg	\$	07/28/15 13:15	08/06/15 00:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		70 - 130				07/28/15 13:15		1
4-Bromofluorobenzene (Surr)	103		70 - 130				07/28/15 13:15	08/06/15 00:23	1
Dibromofluoromethane (Surr)	99		70 - 130				07/28/15 13:15	08/06/15 00:23	1
Toluene-d8 (Surr)	100		70 - 130				07/28/15 13:15	08/06/15 00:23	1
Method: 8270D - Semivola	tile Organic Co	mpounds	(GC/MS)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0714	0.0106	mg/Kg	\$	08/03/15 13:40	and the second se	1
Acenaphthylene	ND		0.0714	0.00958		\$	08/03/15 13:40	08/04/15 18:24	1
Anthracene	ND		0.0714	0.00958	mg/Kg	\$	08/03/15 13:40	08/04/15 18:24	1
Benzo[a]anthracene	0.0289	J	0.0714	0.0160	mg/Kg	\$	08/03/15 13:40	08/04/15 18:24	1
Benzo[a]pyrene	0.0476	L	0.0714	0.0128	mg/Kg	\$	08/03/15 13:40	08/04/15 18:24	1
Benzo[b]fluoranthene	0.0714		0.0714	0.0128	mg/Kg	\$	08/03/15 13:40	08/04/15 18:24	1
Benzo[g,h,i]perylene	0.101		0.0714	0.00958	mg/Kg	4.1	08/03/15 13:40	08/04/15 18:24	1
Benzo[k]fluoranthene	0.0247	J	0.0714	0.0149	mg/Kg	-7	08/03/15 13:40	08/04/15 18:24	1
1-Methylnaphthalene	ND		0.0714	0.0149	mg/Kg	\$	08/03/15 13:40	08/04/15 18:24	1
Pyrene	ND		0.0714	0.0128	mg/Kg	¢	08/03/15 13:40	08/04/15 18:24	1
Phenanthrene	ND		0.0714	0.00958	mg/Kg	\$	08/03/15 13:40	08/04/15 18:24	1
Chrysene	0.0526	L	0.0714	0.00958		\$	08/03/15 13:40	08/04/15 18:24	1
Dibenz(a,h)anthracene	ND		0.0714	0.00745	mg/Kg	¢	08/03/15 13:40	08/04/15 18:24	1
Fluoranthene	ND		0.0714	0.00958	mg/Kg	4	08/03/15 13:40	08/04/15 18:24	1
Fluorene	ND		0.0714	0.0128	mg/Kg		08/03/15 13:40	08/04/15 18:24	1
Indeno[1,2,3-cd]pyrene	0.0645	J	0.0714	0.0106	mg/Kg	\$	08/03/15 13:40	08/04/15 18:24	1
Naphthalene	ND		0.0714	0.00958	mg/Kg	\$	08/03/15 13:40	08/04/15 18:24	1
2-Methylnaphthalene	ND		0.0714	0.0170	mg/Kg	\$	08/03/15 13:40	08/04/15 18:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	64		29 - 120				08/03/15 13:40	08/04/15 18:24	1
Terphenyl-d14 (Surr)	71		13-120				08/03/15 13:40	08/04/15 18:24	1
Nitrobenzene-d5 (Surr)	51		27 - 120				08/03/15 13:40	08/04/15 18:24	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	93		0.10	0.10	%		and have a	08/04/15 16:21	1

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project

Client Sample ID: 1332 Albatross

Date Collected: 07/29/15 11:45 Date Received: 08/01/15 08:45

Marked ROCOD Valatile Oreania Companyale (CO/MC)

Lab Sample ID: 490-84152-3 Matrix: Soil

6

Method: 8260B - Volatile C	Irganic Compo	unds (GC/	MS)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00203	0.000680	mg/Kg	Q	07/29/15 14:45	08/06/15 16:28	1
Ethylbenzene	ND		0.00203	0.000680	mg/Kg	4	07/29/15 14:45	08/06/15 16:28	1
Naphthalene	ND		0.00508	0.00173	mg/Kg	¢	07/29/15 14:45	08/06/15 16:28	1
Toluene	ND		0.00203	0.000751	mg/Kg	4	07/29/15 14:45	08/06/15 16:28	1
Xylenes, Total	ND		0.00508	0.00125	mg/Kg	\$	07/29/15 14:45	08/06/15 16:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		70 - 130				07/29/15 14:45	08/06/15 16:28	1
4-Bromofluorobenzene (Surr)	103		70-130				07/29/15 14:45	08/06/15 16:28	7
Dibromofluoromethane (Surr)	101		70 - 130				07/29/15 14:45	08/06/15 16:28	1
Toluene-d8 (Surr)	100		70 - 130				07/29/15 14:45	08/06/15 16:28	1
Method: 8270D - Semivola	tile Organic Co	mpounds	(GC/MS)						
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	ND		0.0700	0.0104	mg/Kg	\$	08/04/15 11:17	08/06/15 21:01	1
Acenaphthylene	ND		0.0700	0.00940	mg/Kg	Ŷ	08/04/15 11:17	08/06/15 21:01	1
Anthracene	ND		0.0700	0.00940	mg/Kg	\$	08/04/15 11:17	08/06/15 21:01	1
Benzo[a]anthracene	ND		0.0700		mg/Kg	¢	08/04/15 11:17	08/06/15 21:01	1
Benzo[a]pyrene	ND		0.0700	0.0125	mg/Kg	¢	08/04/15 11:17	08/06/15 21:01	1
Benzo[b]fluoranthene	ND		0.0700	0.0125	mg/Kg	23	08/04/15 11:17	08/06/15 21:01	1
Benzo[g,h,i]perylene	ND		0.0700	0.00940	mg/Kg	-*	08/04/15 11:17	08/06/15 21:01	1
Benzo[k]fluoranthene	ND		0.0700		mg/Kg		08/04/15 11:17	08/06/15 21:01	1
1-Methylnaphthalene	ND		0.0700	0.0146	mg/Kg	Ŷ	08/04/15 11:17	08/06/15 21:01	1
Pyrene	0.0436	J	0.0700	0.0125	mg/Kg	\diamond	08/04/15 11:17	08/06/15 21:01	1
Phenanthrene	ND		0.0700	0.00940	mg/Kg	5	08/04/15 11:17	08/06/15 21:01	1
Chrysene	ND		0.0700	0.00940	mg/Kg	\$	08/04/15 11:17	08/06/15 21:01	1
Dibenz(a,h)anthracene	ND		0.0700	0.00731	mg/Kg	4	08/04/15 11:17	08/06/15 21:01	1
Fluoranthene	0.0454	J	0.0700	0.00940	mg/Kg	4	08/04/15 11:17	08/06/15 21:01	1
Fluorene	ND		0.0700	0.0125	mg/Kg	\$	08/04/15 11:17	08/06/15 21:01	1
Indeno[1,2,3-cd]pyrene	ND		0.0700	0.0104	mg/Kg		08/04/15 11:17	08/06/15 21:01	1
Naphthalene	ND		0.0700	0.00940	mg/Kg	¥.	08/04/15 11:17	08/06/15 21:01	1
2-Methylnaphthalene	ND		0.0700	0.0167	mg/Kg	7.90	08/04/15 11:17	08/06/15 21:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	65		29 - 120				08/04/15 11:17	08/06/15 21:01	1
Terphenyl-d14 (Surr)	81		13-120				08/04/15 11:17	08/06/15 21:01	1
Nitrobenzene-d5 (Surr)	63		27 - 120				08/04/15 11:17	08/06/15 21:01	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	93		0.10	0.10	%			08/04/15 16:21	1

TestAmerica Job ID: 490-84152-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 490-270885/7 Matrix: Solid Analysis Batch: 270885

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

%Rec.

Limits

75-127

80 - 134

69 - 150

80 - 132

80 - 137

D %Rec

89

95

99

92

94

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

	MB	MB								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Benzene	ND		0.00200	0.000670	mg/Kg			08/05/15 15:34	1	
Ethylbenzene	ND		0.00200	0.000670	mg/Kg			08/05/15 15:34	1	÷.
Naphthalene	ND		0.00500	0.00170	mg/Kg			08/05/15 15:34	1	
Toluene	ND		0.00200	0.000740	mg/Kg			08/05/15 15:34	1	-
Xylenes, Total	ND		0.00500	0.00123	mg/Kg			08/05/15 15:34	1	
	MB	MB								
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	92		70-130					08/05/15 15:34	1	
4-Bromofluorobenzene (Surr)	96		70 - 130					08/05/15 15:34	1	
Dibromofluoromethane (Surr)	98		70 - 130					08/05/15 15:34	1	
Toluene-d8 (Surr)	98		70-130					08/05/15 15:34	1	

LCS LCS

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

0.11.

Lab Sample ID: LCS 490-270885/3 Matrix: Solid

Analysis Batch: 270885

			Spike	LCS	LCS	
Analyte			Added	Result	Qualifier	
Benzene			0.0500	0.04455		
Ethylbenzene			0.0500	0.04757		
Naphthalene			0.0500	0.04963		
Toluene			0.0500	0.04577		
Xylenes, Total			0.100	0.09432		
	LCS	LCS				
Surrogate	%Recovery	Qualifier	Limits			

	and the second se	
1,2-Dichloroethane-d4 (Surr)	91	70-130
4-Bromofluorobenzene (Surr)	97	70 - 130
Dibromofluoromethane (Surr)	95	70-130
Toluene-d8 (Surr)	99	70 - 130

Lab Sample ID: LCSD 490-270885/4 Matrix: Solid

Analysis Batch: 270885

runaryois baton £10000											
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene			0.0500	0.04427		mg/Kg		89	75-127	1	50
Ethylbenzene			0.0500	0.04673		mg/Kg		93	80 - 134	2	50
Naphthalene			0.0500	0.05022		mg/Kg		100	69 - 150	1	50
Toluene			0.0500	0.04526		mg/Kg		91	80 - 132	1	50
Xylenes, Total			0.100	0.09262		mg/Kg		93	80 - 137	2	50
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr)	91		70 - 130								
4-Bromofluorobenzene (Surr)	97		70 - 130								
Dibromofluoromethane (Surr)	95		70 - 130								
Toluene-d8 (Surr)	99		70 - 130								

TestAmerica Nashville

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 490-271208/7 Matrix: Solid Analysis Batch: 271208

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

D %Rec

84

87

90

85

87

Client Sample ID: Lab Control Sample Dup

%Rec.

Limits

75-127

80 - 134

69 - 150

80 - 132

80 - 137

Prep Type: Total/NA

Prep Type: Total/NA

MB	MB								
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
ND		0.00200	0.000670	mg/Kg			08/06/15 15:59	1	
ND		0.00200	0.000670	mg/Kg			08/06/15 15:59	1	1
ND		0.00500	0.00170	mg/Kg			08/06/15 15:59	1	
ND		0.00200	0.000740	mg/Kg			08/06/15 15:59	1	1
ND		0.00500	0.00123	mg/Kg			08/06/15 15:59	1	
MB	MB								
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
96		70 - 130					08/06/15 15:59	1	
98		70 - 130					08/06/15 15:59	1	
100		70 - 130					08/06/15 15:59	1	
98		70 - 130					08/06/15 15:59	1	
	Result ND ND ND ND ND MB %Recovery 96 98 100	Result Qualifier ND ND ND ND ND ND ND ND ND ND MB MB WB WB WB WB WB WB WB WB WB WB WB WB WB	Result Qualifier RL ND 0.00200 ND 0.00200 ND 0.00500 ND 0.00200 ND 0.00500 ND 0.00500 ND 0.00500 MB MB %Recovery Qualifier Limits 96 70.130 98 70.130 100 70.130	Result Qualifier RL MDL ND 0.00200 0.000670 ND 0.00200 0.000670 ND 0.00500 0.00170 ND 0.00200 0.000740 ND 0.00500 0.00123 MB MB KRecovery Qualifier Limits 96 70 - 130 98 70 - 130 100 70 - 130 70 - 130 70 - 130	Result Qualifier RL MDL Unit ND 0.00200 0.000670 mg/Kg ND 0.00200 0.000670 mg/Kg ND 0.00500 0.00170 mg/Kg ND 0.00200 0.000740 mg/Kg ND 0.00500 0.00123 mg/Kg ND 0.00500 0.00123 mg/Kg MB MB %Recovery Qualifier Limits 96 70 - 130 98 70 - 130 100 70 - 130	Result Qualifier RL MDL Unit D ND 0.00200 0.000670 mg/Kg mg/Kg ND 0.00200 0.000670 mg/Kg ND 0.00500 0.00170 mg/Kg ND 0.00200 0.000740 mg/Kg ND 0.00500 0.00123 mg/Kg ND 0.00500 0.00123 mg/Kg MB MB	Result Qualifier RL MDL Unit D Prepared ND 0.00200 0.000670 mg/Kg mg/	Result Qualifier RL MDL Unit D Prepared Analyzed ND 0.00200 0.000670 mg/Kg 08/06/15 15:59 08/06/15 15:59 ND 0.00200 0.000670 mg/Kg 08/06/15 15:59 08/06/15 15:59 ND 0.00200 0.00170 mg/Kg 08/06/15 15:59 08/06/15 15:59 ND 0.00200 0.000740 mg/Kg 08/06/15 15:59 08/06/15 15:59 ND 0.00500 0.00123 mg/Kg 08/06/15 15:59 08/06/15 15:59 ND 0.00500 0.00123 mg/Kg 08/06/15 15:59 08/06/15 15:59 MB MB	Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac ND 0.00200 0.000670 mg/Kg 08/06/15 15:59 1 ND 0.00200 0.000670 mg/Kg 08/06/15 15:59 1 ND 0.00200 0.00170 mg/Kg 08/06/15 15:59 1 ND 0.00200 0.00170 mg/Kg 08/06/15 15:59 1 ND 0.00200 0.00170 mg/Kg 08/06/15 15:59 1 ND 0.00200 0.00173 mg/Kg 08/06/15 15:59 1 ND 0.00500 0.00123 mg/Kg 08/06/15 15:59 1 ND 0.00500 0.00123 mg/Kg 08/06/15 15:59 1 MB MB Prepared Analyzed Dil Fac 96 70 - 130 Prepared Analyzed Dil Fac 98 70 - 130 08/06/15 15:59 1 <tr< td=""></tr<>

LCS LCS

Result Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Lab Sample ID: LCS 490-271208/3 Matrix: Solid

Analysis Batch: 271208

Toluene-d8 (Surr)

And 19515 Bacon, 21 1200				
and and the second second second			Spike	LCS
Analyte			Added	Result
Benzene			0.0500	0.04191
Ethylbenzene			0.0500	0.04358
Naphthalene			0.0500	0.04514
Toluene			0.0500	0.04247
Xylenes, Total			0.100	0.08665
	LCS	LCS		
Surrogate	%Recovery	Qualifier	Limits	
1,2-Dichloroethane-d4 (Surr)	90		70 - 130	
4-Bromofluorobenzene (Surr)	98		70-130	
Dibromofluoromethane (Surr)	96		70-130	

99

Lab Sample ID: LCSD 490-271208/4 Matrix: Solid

Analysis Batch: 271208											
			Spike	LCSD	LCSD			-	%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene			0.0500	0.04935		mg/Kg		99	75 - 127	16	50
Ethylbenzene			0.0500	0.05194		mg/Kg		104	80 - 134	18	50
Naphthalene			0.0500	0.05263		mg/Kg		105	69 - 150	15	50
Toluene			0.0500	0.05052		mg/Kg		101	80 - 132	17	50
Xylenes, Total			0.100	0.1022		mg/Kg		102	80 - 137	17	50
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr)	91		70 - 130								
4-Bromofluorobenzene (Surr)	99		70 - 130								
Dibromofluoromethane (Surr)	97		70 - 130								
Toluene-d8 (Surr)	100		70 - 130								

70-130

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 490-270351/1-A Matrix: Solid Analysis Batch: 270566

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 270351

A many are materin braddo								Prep Batch:	2/0351	
	MB	MB						C. C. C. C. L. C. S. S. C. Passa		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Acenaphthene	ND		0.0670	0.0100	mg/Kg		08/03/15 13:40	08/04/15 15:36	1	
Acenaphthylene	ND		0.0670	0.00900	mg/Kg		08/03/15 13:40	08/04/15 15:36	1	1
Anthracene	ND		0.0670	0.00900	mg/Kg		08/03/15 13:40	08/04/15 15:36	1	7
Benzo[a]anthracene	ND		0.0670	0.0150	mg/Kg		08/03/15 13:40	08/04/15 15:36	1	
Benzo[a]pyrene	ND		0.0670	0.0120	mg/Kg		08/03/15 13:40	08/04/15 15:36	1	
Benzo[b]fluoranthene	ND		0.0670	0.0120	mg/Kg		08/03/15 13:40	08/04/15 15:36	1	
Benzo[g,h,i]perylene	ND		0.0670	0.00900	mg/Kg		08/03/15 13:40	08/04/15 15:36	1	
Benzo[k]fluoranthene	ND		0.0670	0.0140	mg/Kg		08/03/15 13:40	08/04/15 15:36	1	
1-Methylnaphthalene	ND		0.0670	0.0140	mg/Kg		08/03/15 13:40	08/04/15 15:36	1	
Pyrene	ND		0.0670	0.0120	mg/Kg		08/03/15 13:40	08/04/15 15:36	1	
Phenanthrene	ND		0.0670	0.00900	mg/Kg		08/03/15 13:40	08/04/15 15:36	1	
Chrysene	ND		0.0670	0.00900	mg/Kg		08/03/15 13:40	08/04/15 15:36	1	
Dibenz(a,h)anthracene	ND		0.0670	0.00700	mg/Kg		08/03/15 13:40	08/04/15 15:36	1	
Fluoranthene	ND		0.0670	0.00900	mg/Kg		08/03/15 13:40	08/04/15 15:36	1	
Fluorene	ND		0.0670	0.0120	mg/Kg		08/03/15 13:40	08/04/15 15:36	1	
Indeno[1,2,3-cd]pyrene	ND		0.0670	0.0100	mg/Kg		08/03/15 13:40	08/04/15 15:36	1	
Naphthalene	ND		0.0670	0.00900			08/03/15 13:40	08/04/15 15:36	1	
2-Methylnaphthalene	ND		0.0670	0.0160	mg/Kg		08/03/15 13:40	08/04/15 15:36	1	
	MB	MB								
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
2-Fluorobiphenyl (Surr)	80		29 - 120				08/03/15 13:40	08/04/15 15:36	1	
Terphenyl-d14 (Surr)	85		13 - 120				08/03/15 13:40	08/04/15 15:36	1	
Nitrobenzene-d5 (Surr)	69		27 - 120				08/03/15 13:40	08/04/15 15:36	1	
								and the second second second		

1.22.22

Lab Sample ID: LCS 490-270351/2-A Matrix: Solid

Analysis Batch: 270566

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 270351

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthylene	1.67	1.273		mg/Kg		76	38 - 120
Anthracene	1.67	1.368		mg/Kg		82	46 - 124
Benzo[a]anthracene	1.67	1.344		mg/Kg		81	45 - 120
Benzo[a]pyrene	1.67	1.379		mg/Kg		83	45 - 120
Benzo[b]fluoranthene	1.67	1.345		mg/Kg		81	42 - 120
Benzo[g,h,i]perylene	1.67	1.502		mg/Kg		90	38 - 120
Benzo[k]fluoranthene	1.67	1.351		mg/Kg		81	42 - 120
1-Methylnaphthalene	1.67	1.317		mg/Kg		79	32 - 120
Pyrene	1.67	1.265		mg/Kg		76	43 - 120
Phenanthrene	1.67	1.294		mg/Kg		78	45 - 120
Chrysene	1.67	1.366		mg/Kg		82	43 - 120
Dibenz(a,h)anthracene	1.67	1.572		mg/Kg		94	32 - 128
Fluoranthene	1.67	1.401		mg/Kg		84	46 - 120
Fluorene	1.67	1.388		mg/Kg		83	42 - 120
Indeno[1,2,3-cd]pyrene	1.67	1.486		mg/Kg		89	41 - 121
Naphthalene	1.67	1.207		mg/Kg		72	32 - 120
2-Methylnaphthalene	1.67	1.234		mg/Kg		74	28 - 120
				0 0			

.....

TestAmerica Nashville

Phenanthrene

Chrysene

7

Mathed 9270D Comjustile Organia Companyed (CC/MC) (Continued)

Method: 8270D - Semi	volatile Or	ganic Co	ompounds	s (GC/M	S) (Cor	ntinued)				
Lab Sample ID: LCS 490-	270351/2-A					Clier	nt Sai	nple ID	: Lab Cor	trol Sa	mple
Matrix: Solid									Prep Typ		
Analysis Batch: 270566									Prep Ba		
Contraction of the second s	100	LCS									
Surrogate	%Recovery		Limits								
2-Fluorobiphenyl (Surr)	76	quanner	29 - 120								
Terphenyl-d14 (Surr)	79		13-120								
Nitrobenzene-d5 (Surr)	69		27 - 120								
Millobenzene-us (Sun)	03		21-120								
Lab Sample ID: LCSD 490	0-270351/3-A				(lient Sa	mple	ID: Lab	Control	Sample	Dup
Matrix: Solid									Prep Ty		
Analysis Batch: 270566									Prep Ba		
And the same set of the set			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthylene			1.67	1.575		mg/Kg		94	38 - 120	21	50
Anthracene			1.67	1.659		mg/Kg		100	46 - 124	19	49
Benzo[a]anthracene			1.67	1.660		mg/Kg		100	45 - 120	21	50
Benzo[a]pyrene			1.67	1.694		mg/Kg		102	45 - 120	20	50
Benzo[b]fluoranthene			1.67	1.703		mg/Kg		102	42 - 120	24	50
Benzo[g,h,i]perylene			1.67	1.815		mg/Kg		109	38 - 120	19	50
Benzo[k]fluoranthene			1.67	1.572		mg/Kg		94	42 - 120	15	45
1-Methylnaphthalene			1.67	1.704		mg/Kg		102	32 - 120	26	50
Pyrene			1.67	1.498		mg/Kg		90	43 - 120	17	50
Phenanthrene			1.67	1.582		mg/Kg		95	45 - 120	20	50
Chrysene			1.67	1.623		mg/Kg		97	43 - 120	17	49
Dibenz(a,h)anthracene			1.67	1.927		mg/Kg		116	32 - 128	20	50
Fluoranthene			1.67	1,740		mg/Kg		104	46 - 120	22	50
Fluorene			1.67	1.672		mg/Kg		100	42 - 120	19	50
Indeno[1,2,3-cd]pyrene			1.67	1.826		mg/Kg		110	41 - 121	20	50
Naphthalene			1.67	1.543		mg/Kg		93	32 - 120	24	50
2-Methylnaphthalene			1.67	1.587		mg/Kg		95	28 - 120	25	50
2 Weatymaphalaiono			1.07	1.007		inging		50	20-120	20	50
		LCSD									
Surrogate	%Recovery	Qualifier	Limits								
2-Fluorobiphenyl (Surr)	89		29 - 120								
Terphenyl-d14 (Surr)	88		13 - 120								
Nitrobenzene-d5 (Surr)	86		27 - 120								
Lab Sample ID: 490-8417	1-E-1-B MS						C	lient Sa	mple ID:	Matrix	Sniko
Matrix: Solid							~	inonic ou	Prep Ty		
Analysis Batch: 270566									Prep Ba		
ratalyoto Batom 210000	Sample	Sample	Spike	MS	MS				%Rec.		10001
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Acenaphthylene	ND		1.92	1.718		mg/Kg	0	89	25 - 120		
Anthracene	ND		1.92	1.832		mg/Kg	\$	95	28 - 125		
Benzo[a]anthracene	0.0459	J	1.92	1.830		mg/Kg	-2	93	23 - 120		
Benzo[a]pyrene	0.0438		1.92	1.917		mg/Kg	->	97	15 - 128		
Benzo[b]fluoranthene	0.0863		1.92	1.930		mg/Kg	\$	96	12 - 133		
Benzo[g,h,i]perylene	ND		1.92	2.008		mg/Kg	¢.	104	22 - 120		
Benzo[k]fluoranthene	0.0345	1	1.92	1.871		mg/Kg	¢	95	28 - 120		
1-Methylnaphthalene	ND	Ê	1.92	1.817		mg/Kg	\$	94	10 - 120		
Pyrene	0.0868		1.92	1.714		mg/Kg	2	85	20 - 123		
	0.0000		1.02	1.714		ingity	-	00	20-120		

TestAmerica Nashville

\$

\$

91

92

21-122

20 - 120

mg/Kg

mg/Kg

1.760

1.828

1.92

1.92

ND

0.0622 J

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 490-8417 Matrix: Solid	1-F-1-B MS						CI	lient Sa	mple ID: Matrix Spike
Analysis Batch: 270566	Sampla	Sample	Spike	MC	MS				Prep Type: Total/NA Prep Batch: 270351
Analyte		Qualifier				10.0	1.2		%Rec.
and an		Quanner	Added		Qualifier	Unit	D	%Rec	Limits
Dibenz(a,h)anthracene	ND		1.92	2.133		mg/Kg	¢	111	12 - 128
Fluoranthene	ND		1.92	1.954		mg/Kg	Φ	102	10 - 143
Fluorene	ND		1.92	1.885		mg/Kg	4	98	20 - 120
Indeno[1,2,3-cd]pyrene	ND		1.92	2.039		mg/Kg	\$	106	22 - 121
Naphthalene	ND		1.92	1.608		mg/Kg	\$	84	10 - 120
2-Methylnaphthalene	ND		1.92	1.708		mg/Kg	4	89	13 - 120
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						
2-Fluorobiphenyl (Surr)	82		29 - 120						
Terphenyl-d14 (Surr)	84		13-120						
Nitrobenzene-d5 (Surr)	73		27 - 120						
Nitrobenzene-d5 (Surr)	73		27 - 120						

Lab Sample ID: 490-84171-F-1-C MSD Matrix: Solid Analysis Batch: 270566

Analysis Batch: 270566				Courts					Prep Ba	atch: 2	70351
0-1-1-1		Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthylene	ND		1.96	1.632		mg/Kg	÷.	83	25 - 120	5	50
Anthracene	ND		1.96	1.767		mg/Kg	-2	90	28 - 125	4	49
Benzo[a]anthracene	0.0459	J	1.96	1.749		mg/Kg	2	87	23 - 120	5	50
Benzo[a]pyrene	0.0438	J	1.96	1.848		mg/Kg	\$	92	15-128	4	50
Benzo[b]fluoranthene	0.0863		1.96	1.888		mg/Kg	-	92	12 - 133	2	50
Benzo[g,h,i]perylene	ND		1.96	1.898		mg/Kg	\$	97	22 - 120	6	50
Benzo[k]fluoranthene	0.0345	J	1.96	1.765		mg/Kg	2	88	28 - 120	6	45
1-Methylnaphthalene	ND		1.96	1.674		mg/Kg	-	85	10 - 120	8	50
Pyrene	0.0868		1.96	1.612		mg/Kg	2	78	20 - 123	6	50
Phenanthrene	ND		1.96	1.685		mg/Kg	£	86	21 - 122	4	50
Chrysene	0.0622	J	1.96	1.733		mg/Kg	¢	85	20 - 120	5	49
Dibenz(a,h)anthracene	ND		1.96	2.017		mg/Kg	\$	103	12 - 128	6	50
Fluoranthene	ND		1.96	1.908		mg/Kg	¢.	97	10-143	2	50
Fluorene	ND		1.96	1.759		mg/Kg	¢	90	20-120	7	50
Indeno[1,2,3-cd]pyrene	ND		1.96	1.916		mg/Kg	\$	98	22 - 121	6	50
Naphthalene	ND		1.96	1.490		mg/Kg	\$	76	10-120	8	50
2-Methylnaphthalene	ND		1.96	1.567		mg/Kg	\$	80	13 - 120	9	50
	MSD	MSD									

	WOD	MOD	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	76		29-120
Terphenyl-d14 (Surr)	78		13-120
Nitrobenzene-d5 (Surr)	69		27 - 120

Lab Sample ID: MB 490-270536/1-A Matrix: Solid Analysis Batch: 271198

							Pren Batch	
MB	MB						rich baton.	210330
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ND		0.0670	0.0100	mg/Kg		08/04/15 11:17		
ND		0.0670	0.00900	mg/Kg		08/04/15 11:17	08/06/15 15:12	1
ND		0.0670	0.00900	mg/Kg		08/04/15 11:17	08/06/15 15:12	1
	Result ND ND	ND	Result Qualifier RL ND 0.0670 ND 0.0670	Result Qualifier RL MDL ND 0.0670 0.0100 ND 0.0670 0.00900	Result Qualifier RL MDL Unit ND 0.0670 0.0100 mg/Kg ND 0.0670 0.00900 mg/Kg	Result Qualifier RL MDL Unit D ND 0.0670 0.0100 mg/Kg ND 0.0670 0.00900 mg/Kg	MB MB Result Qualifier RL MDL Unit D Prepared ND 0.0670 0.0100 mg/Kg 08/04/15 11:17 ND 0.0670 0.00900 mg/Kg 08/04/15 11:17	MB MB Result Qualifier RL MDL Unit D Prep Batch: Prep Batch:

TestAmerica Nashville

Prep Type: Total/NA

Client Sample ID: Method Blank

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 490-270 Matrix: Solid	536/1-A							le ID: Method Prep Type: To		
Analysis Batch: 271198								Prep Batch: 2		
and the second se	MB	MB						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Benzo[a]anthracene	ND		0.0670	0.0150	mg/Kg		08/04/15 11:17	08/06/15 15:12	1	
Benzo[a]pyrene	ND		0.0670	0.0120	mg/Kg		08/04/15 11:17	08/06/15 15:12	1	14
Benzo[b]fluoranthene	ND		0.0670	0.0120	mg/Kg		08/04/15 11:17	08/06/15 15:12	1	
Benzo[g,h,i]perylene	ND		0.0670	0.00900	mg/Kg		08/04/15 11:17	08/06/15 15:12	1	Ľ,
Benzo[k]fluoranthene	ND		0.0670	0.0140	mg/Kg		08/04/15 11:17	08/06/15 15:12	1	
1-Methylnaphthalene	ND		0.0670	0.0140	mg/Kg		08/04/15 11:17	08/06/15 15:12	1	
Pyrene	ND		0.0670	0.0120	mg/Kg		08/04/15 11:17	08/06/15 15:12	1	
Phenanthrene	ND		0.0670	0.00900	mg/Kg		08/04/15 11:17	08/06/15 15:12	1	
Chrysene	ND		0.0670	0.00900	mg/Kg		08/04/15 11:17	08/06/15 15:12	1	
Dibenz(a,h)anthracene	ND		0.0670	0.00700	mg/Kg		08/04/15 11:17	08/06/15 15:12	1	
Fluoranthene	ND		0.0670	0.00900	mg/Kg		08/04/15 11:17	08/06/15 15:12	1	
Fluorene	ND		0.0670	0.0120	mg/Kg		08/04/15 11:17	08/06/15 15:12	1	
Indeno[1,2,3-cd]pyrene	ND		0.0670	0.0100	mg/Kg		08/04/15 11:17	08/06/15 15:12	1	
Naphthalene	ND		0.0670	0.00900	mg/Kg		08/04/15 11:17	08/06/15 15:12	1	
2-Methylnaphthalene	ND		0.0670	0.0160	mg/Kg		08/04/15 11:17	08/06/15 15:12	1	
	MB	MB								
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
2-Fluorobiphenyl (Surr)	74		29 - 120				08/04/15 11:17	08/06/15 15:12	1	
Terphenyl-d14 (Surr)	89		13-120				08/04/15 11:17	08/06/15 15:12	1	
Nitrobenzene-d5 (Surr)	77		27 - 120				08/04/15 11:17	08/06/15 15:12	1	

Lab Sample ID: LCS 490-270536/2-A Matrix: Solid Analysis Batch: 271198

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 270536

i interjeto Batolit al 1100			Spike	LCS	LCS				%Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthylene			1.67	1.404		mg/Kg		84	38 - 120
Anthracene			1.67	1.618		mg/Kg		97	46 - 124
Benzo[a]anthracene			1.67	1.645		mg/Kg		99	45 - 120
Benzo[a]pyrene			1.67	1.646		mg/Kg		99	45 - 120
Benzo[b]fluoranthene			1.67	1.589		mg/Kg		95	42 - 120
Benzo[g,h,i]perylene			1.67	1.677		mg/Kg		101	38 - 120
Benzo[k]fluoranthene			1.67	1.751		mg/Kg		105	42 - 120
1-Methylnaphthalene			1.67	1.689		mg/Kg		101	32 - 120
Pyrene			1.67	1.630		mg/Kg		98	43 - 120
Phenanthrene			1.67	1.552		mg/Kg		93	45 - 120
Chrysene			1.67	1.581		mg/Kg		95	43 - 120
Dibenz(a,h)anthracene			1.67	1.703		mg/Kg		102	32 - 128
Fluoranthene			1.67	1.657		mg/Kg		99	46 - 120
Fluorene			1.67	1.636		mg/Kg		98	42 - 120
Indeno[1,2,3-cd]pyrene			1.67	1.678		mg/Kg		101	41 - 121
Naphthalene			1.67	1.560		mg/Kg		94	32 - 120
2-Methylnaphthalene			1.67	1.587		mg/Kg		95	28 - 120
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
2-Fluorobiphenyl (Surr)	87		29-120						
Terphenyl-d14 (Surr)	98		13 - 120						

Limits

Surrogate

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 490-270536/2-A Matrix: Solid Analysis Batch: 271198 LCS LCS

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA
	Prep Batch: 270536

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Nitrobenzene-d5 (Surr)	99	27 - 120		
Lab Sample ID: LCSD 49	0-270536/3-A			
Matrix: Solid				
Analysis Batch: 271198				
		Spike	LCSD	LCSD
Analyte		Added	Result	Qualit
		and the second se		

%Recovery Qualifier

inderive borner								201 1.01	CALL FRANCE
Analysis Batch: 271198							Prep Ba	atch: 2	
	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthylene	1.67	1.112		mg/Kg		67	38 - 120	23	50
Anthracene	1.67	1.279		mg/Kg		77	46 - 124	23	49
Benzo[a]anthracene	1.67	1.316		mg/Kg		79	45 - 120	22	50
Benzo[a]pyrene	1.67	1.306		mg/Kg		78	45 - 120	23	50
Benzo[b]fluoranthene	1.67	1.310		mg/Kg		79	42 - 120	19	50
Benzo[g,h,i]perylene	1.67	1.366		mg/Kg		82	38 - 120	20	50
Benzo[k]fluoranthene	1.67	1.340		mg/Kg		80	42 - 120	27	45
1-Methylnaphthalene	1.67	1.327		mg/Kg		80	32 - 120	24	50
Pyrene	1.67	1.346		mg/Kg		81	43 - 120	19	50
Phenanthrene	1.67	1.242		mg/Kg		75	45 - 120	22	50
Chrysene	1.67	1.273		mg/Kg		76	43 - 120	22	49
Dibenz(a,h)anthracene	1.67	1.400		mg/Kg		84	32 - 128	20	50
Fluoranthene	1.67	1.349		mg/Kg		81	46 - 120	21	50
Fluorene	1.67	1.290		mg/Kg		77	42 - 120	24	50
Indeno[1,2,3-cd]pyrene	1.67	1.347		mg/Kg		81	41 - 121	22	50
Naphthalene	1.67	1.177		mg/Kg		71	32 - 120	28	50
2-Methylnaphthalene	1.67	1.202		mg/Kg		72	28 - 120	28	50

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	67		29 - 120
Terphenyl-d14 (Surr)	77		13 - 120
Nitrobenzene-d5 (Surr)	72		27 - 120

Lab Sample ID: 490-84145-E-1-B MS Matrix: Solid Analysis Batch: 271198

Matrix. Solid									Flep Type. TotalinA
Analysis Batch: 271198									Prep Batch: 270536
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthylene	ND		1.66	1.139		mg/Kg		69	25 - 120
Anthracene	ND		1.66	1.302		mg/Kg		79	28 - 125
Benzo[a]anthracene	ND		1.66	1.339		mg/Kg		81	23 - 120
Benzo[a]pyrene	ND		1.66	1.306		mg/Kg		79	15 - 128
Benzo[b]fluoranthene	ND		1.66	1.309		mg/Kg		79	12-133
Benzo[g,h,i]perylene	ND		1.66	1.357		mg/Kg		82	22 - 120
Benzo[k]fluoranthene	ND		1.66	1.371		mg/Kg		83	28 - 120
1-Methylnaphthalene	ND		1.66	1.328		mg/Kg		80	10-120
Pyrene	ND		1.66	1.334		mg/Kg		81	20 - 123
Phenanthrene	ND		1.66	1.267		mg/Kg		77	21 - 122
Chrysene	ND		1.66	1.301		mg/Kg		79	20 - 120
Dibenz(a,h)anthracene	ND		1.66	1.419		mg/Kg		86	12 - 128
Fluoranthene	ND		1.66	1.379		mg/Kg		83	10 - 143

TestAmerica Nashville

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 490-8414	5-E-1-B MS						CI	ient Sa	mple ID: Matrix Spike	à.
Matrix: Solid									Prep Type: Total/NA	
Analysis Batch: 271198									Prep Batch: 270536	5
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Fluorene	ND		1.66	1.313		mg/Kg		79	20 - 120	
Indeno[1,2,3-cd]pyrene	ND		1.66	1.383		mg/Kg		84	22 - 121	
Naphthalene	ND		1.66	1.230		mg/Kg		74	10 - 120	
2-Methylnaphthalene	ND		1.66	1.251		mg/Kg		76	13 - 120	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
2-Fluorobiphenyl (Surr)	71		29 - 120							
Terphenyl-d14 (Surr)	80		13-120							
Nitrobenzene-d5 (Surr)	77		27 - 120							

Lab Sample ID: 490-84145-E-1-C MSD Matrix: Solid

Analysis Batch: 271198

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA Prep Batch: 270536

Analysis Batch: 2/1198	Sample	Sample	Spike	MSD	MSD				Prep Ва %Rec.	atch: 27	RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthylene	ND		1.62	0.9026		mg/Kg		56	25 - 120	23	50
Anthracene	ND		1.62	1.034		mg/Kg		64	28 - 125	23	49
Benzo[a]anthracene	ND		1.62	1.043		mg/Kg		64	23 - 120	25	50
Benzo[a]pyrene	ND		1.62	1.043		mg/Kg		64	15 - 128	22	50
Benzo[b]fluoranthene	ND		1.62	1.042		mg/Kg		64	12 - 133	23	50
Benzo[g,h,i]perylene	ND		1.62	1.077		mg/Kg		67	22 - 120	23	50
Benzo[k]fluoranthene	ND		1.62	1.047		mg/Kg		65	28 - 120	27	45
1-Methylnaphthalene	ND		1.62	1.035		mg/Kg		64	10 - 120	25	50
Pyrene	ND		1.62	1.055		mg/Kg		65	20 - 123	23	50
Phenanthrene	ND		1.62	1.019		mg/Kg		63	21 - 122	22	50
Chrysene	ND		1.62	1.029		mg/Kg		64	20 - 120	23	49
Dibenz(a,h)anthracene	ND		1.62	1.092		mg/Kg		67	12 - 128	26	50
Fluoranthene	ND		1.62	1.066		mg/Kg		66	10-143	26	50
Fluorene	ND		1.62	1.032		mg/Kg		64	20 - 120	24	50
Indeno[1,2,3-cd]pyrene	ND		1.62	1.078		mg/Kg		67	22 - 121	25	50
Naphthalene	ND		1.62	0.9487		mg/Kg		59	10 - 120	26	50
2-Methylnaphthalene	ND		1.62	0.9672		mg/Kg		60	13 - 120	26	50
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
2-Fluorobiphenyl (Surr)	55		29 - 120								

Method: Moisture - Percent Moisture

64

60

Terphenyl-d14 (Surr)

Nitrobenzene-d5 (Surr)

Lab Sample ID: 490-84 Matrix: Solid	208-A-6 DU					Clier	nt Sample ID: Dup Prep Type: Tot	
Analysis Batch: 27063	8						1100 1300.100	ama
And the second second		Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Percent Solids	74		74		%		0.9	20

13-120

27 - 120

TestAmerica Nashville

QC Association Summary

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project

GC/MS VOA

Prep Batch: 270186

Tiop Batom are too					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-84152-1	1220 Cardinal	Total/NA	Soll	5035	
490-84152-2	459 Elderberry	Total/NA	Soil	5035	
490-84152-3	1332 Albatross	Total/NA	Soil	5035	
Analysis Batch: 2708	85				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-84152-1	1220 Cardinal	Total/NA	Soil	8260B	270186
490-84152-2	459 Elderberry	Total/NA	Soil	8260B	270186 8
LCS 490-270885/3	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 490-270885/4	Lab Control Sample Dup	Total/NA	Solid	8260B	
MB 490-270885/7	Method Blank	Total/NA	Solid	8260B	
Analysis Batch: 2712	08				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-84152-3	1332 Albatross	Total/NA	Soil	8260B	270186
LCS 490-271208/3	Lab Control Sample	Total/NA	Solid	8260B	
LCSD 490-271208/4	Lab Control Sample Dup	Total/NA	Solid	8260B	
MB 490-271208/7	Method Blank	Total/NA	Solid	8260B	
GC/MS Semi VOA					
Prep Batch: 270351					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-84152-2	459 Elderberry	Total/NA	Soil	3550C	Frep batch
490-84171-F-1-B MS	Matrix Spike	Total/NA	Solid	3550C	
490-84171-F-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	3550C	
LCS 490-270351/2-A	Lab Control Sample	Total/NA	Solid	3550C	
LCSD 490-270351/3-A	Lab Control Sample Dup	Total/NA	Solid	3550C	
MB 490-270351/1-A	Method Blank	Total/NA	Solid	3550C	
Prep Batch: 270536					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-84145-E-1-B MS	Matrix Spike	Total/NA	Solid	3550C	
490-84145-E-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	3550C	
490-84152-1	1220 Cardinal	Total/NA	Soil	3550C	
490-84152-3	1332 Albatross	Total/NA	Soil	3550C	
LCS 490-270536/2-A	Lab Control Sample	Total/NA	Solid	3550C	
LCSD 490-270536/3-A	Lab Control Sample Dup	Total/NA	Solid	3550C	
MB 490-270536/1-A	Method Blank	Total/NA	Solid	3550C	
Analysis Batch: 2705	66				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-84152-2	459 Elderberry	Total/NA	Soil	8270D	270351
		T-1-1/210	Solid	8270D	270351
490-84171-F-1-B MS	Matrix Spike	Total/NA	0010	02/00	210331
490-84171-F-1-B MS 490-84171-F-1-C MSD	Matrix Spike Matrix Spike Duplicate	Total/NA	Solid	8270D	270351
					270351
490-84171-F-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8270D	

TestAmerica Nashville

QC Association Summary

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project

8

GC/MS Semi VOA (Continued)

Analysis Batch: 271198

490-84208-A-6 DU

Duplicate

Lab Sample ID 490-84145-E-1-B MS	Client Sample ID Matrix Spike	Prep Type Total/NA	Matrix Solid	Method 8270D	Prep Batch 270536	
490-84145-E-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8270D	270536	
490-84152-1	1220 Cardinal	Total/NA	Soil	8270D	270536	
490-84152-3	1332 Albatross	Total/NA	Soil	8270D	270536	
LCS 490-270536/2-A	Lab Control Sample	Total/NA	Solid	8270D	270536	
LCSD 490-270536/3-A	Lab Control Sample Dup	Total/NA	Solid	8270D	270536	
MB 490-270536/1-A	Method Blank	Total/NA	Solid	8270D	270536	1
General Chemistr	Ŷ					
Analysis Batch: 2706	38					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
490-84134-A-1 MS	Matrix Spike	Total/NA	Solid	Moisture		
490-84134-A-1 MSD	Matrix Spike Duplicate	Total/NA	Solid	Moisture		
490-84152-1	1220 Cardinal	Total/NA	Soil	Moisture		
490-84152-2	459 Elderberry	Total/NA	Soil	Moisture		
490-84152-3	1332 Albatross	Total/NA	Soil	Moisture		

Total/NA

Solid

Moisture

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project

Client Sample ID: 1220 Cardinal

Date Collected: 07/27/15 13:45 Date Received: 08/01/15 08:45

Lab Sample ID: 490-84152-1

Matrix: Soil

Matrix: Soil

9

Batch Batch Dil Initial Final Batch Prepared Prep Type Method Type Run Amount Amount Number Factor or Analyzed Analyst Lab Total/NA Prep 5035 5.423 g 5.0 mL 270186 07/27/15 13:45 JLP TAL NSH Total/NA Analysis 8260B 5.423 g 5.0 mL 270885 1 08/05/15 23:53 AK1 TAL NSH Total/NA Prep 3550C 30.16 g 1 mL 270536 08/04/15 11:17 LDC TAL NSH Total/NA Analysis 8270D 30.16 g 1 mL 271198 1 08/06/15 20:36 SNR TAL NSH Total/NA Analysis Moisture 1 270638 08/04/15 16:21 HMV TAL NSH

Client Sample ID: 459 Elderberry

Date Collected: 07/28/15 13:15 Date Received: 08/01/15 08:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5.0 mL	270186	07/28/15 13:15	JLP	TAL NSH
Total/NA	Analysis	8260B		1	4.95 g	5.0 mL	270885	08/06/15 00:23	AK1	TAL NSH
Total/NA	Prep	3550C			30.38 g	1 mL	270351	08/03/15 13:40	RMS	TAL NSH
Total/NA	Analysis	8270D		1	30.38 g	1 mL	270566	08/04/15 18:24	SNR	TAL NSH
Total/NA	Analysis	Moisture		1			270638	08/04/15 16:21	HMV	TAL NSH

Client Sample ID: 1332 Albatross

Date Collected: 07/29/15 11:45 Date Received: 08/01/15 08:45

Lab Sample ID: 490-84152-3

Lab Sample ID: 490-84152-2

Matrix: Soil

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.297 g	5.0 mL	270186	07/29/15 14:45	6 1. 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	TAL NSH
Total/NA	Analysis	8260B		1	5.297 g	5.0 mL	271208	08/06/15 16:28	SLM	TAL NSH
Total/NA	Prep	3550C			30.89 g	1 mL	270536	08/04/15 11:17	LDC	TAL NSH
Total/NA	Analysis	8270D		1	30.89 g	1 mL	271198	08/06/15 21:01	SNR	TAL NSH
Total/NA	Analysis	Moisture		1			270638	08/04/15 16:21	HMV	TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Method Summary

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-84152-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL NSH
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL NSH
Moisture	Percent Moisture	EPA	TAL NSH

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Certification Summary

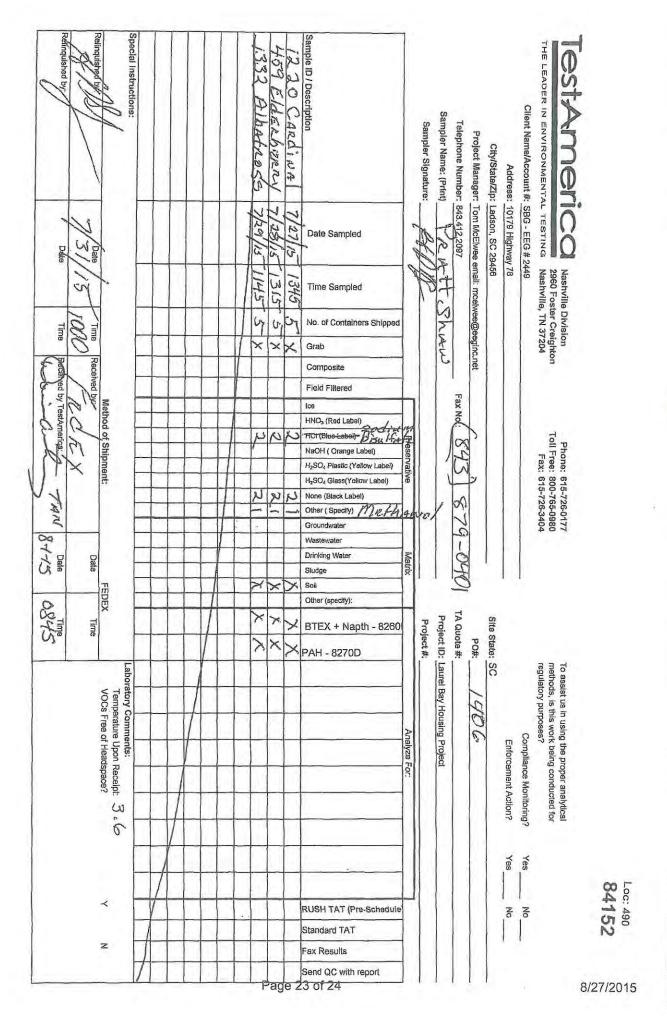
Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project

Laboratory: TestAmerica Nashville

Unless otherwise noted all analytes for this laboratory were covered under each certification below.

Authority	Program		EPA Region	Certification ID	Expiration Date
South Carolina	State Pro	gram	4	84009 (001)	02-28-16
The following analyte:	s are included in this repo	rt, but certification is	s not offered by the g	overning authority:	
Analysis Method	Prep Method	Matrix	Analyt	e	
8270D	3550C	Soil	1-Metl	hylnaphthalene	
Moisture		Soil	Percei	nt Solids	

TestAmerica Job ID: 490-84152-1


TestAmerica Nashville

*

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING Nashville, TN	COOLER RECEIPT FORM	490-84152 Chain of Custody
Cooler Received/Opened On 8/1/2015	<u>5 @ 0845</u>	
1. Tracking #	(last 4 digits, FedEx)	
Courier: FedEx IR Gun ID_9	4660220	
2. Temperature of rep. sample or tem	np blank when opened: 3.4 Degrees Celsius	
3. If Item #2 temperature is 0°C or les	s, was the representative sample or temp blank	frozen? YES NO. NA
4. Were custody seals on outside of o	cooler?	TES.NONA
If yes, how many and where: (z)	Front Buck	
5. Were the seals intact, signed, and	dated correctly?	TESNONA
6. Were custody papers inside cooler	3	ES.NONA
I certify that I opened the cooler and a	answered questions 1-6 (intial)	MON
7. Were custody seals on containers:	YES NO and Intac	t YESNO
Were these signed and dated corre	ectly?	YESNO. NA
8. Packing mat'l used? Bubblewrap	Plastic bag Peanuts Vermiculite Foam Inser	t Paper Other None
9. Cooling process:	(Ice) Ice-pack Ice (direct contact)	Dry ice Other None
10. Did all containers arrive in good of	condition (unbroken)?	YES.NONA
11. Were all container labels complet	e (#, date, signed, pres., etc)?	ES NONA
12. Did all container labels and tags a	agree with custody papers?	YES NONA
13a. Were VOA vials received?		YES NO NA
b. Was there any observable heads	space present in any VOA vial?	YES NO. (NA)
14. Was there a Trip Blank in this coo	bler? YES NONA If multiple coolers,	sequence #
I certify that I unloaded the cooler and	d answered questions 7-14 (intial)	R+
15a. On pres'd bottles, did pH test st	rips suggest preservation reached the correct p	H level? YES NO NA
b. Did the bottle labels indicate the	at the correct preservatives were used	YESNO. (NA)
16. Was residual chlorine present?		YES NO. (NA)
		(intial) DA
I certify that I checked for chlorine an	d pH as per SOP and answered questions 15-16	
I certify that I checked for chlorine an 17. Were custody papers properly fill		YES NO NA
	ed out (ink, signed, etc)?	YESNONA
17. Were custody papers properly fill	ed out (ink, signed, etc)? in the appropriate place?	0
 Were custody papers properly fill 18. Did you sign the custody papers 	ed out (ink, signed, etc)? in the appropriate place? the analysis requested?	YES NONA
 Were custody papers properly fill Did you sign the custody papers Were correct containers used for Was sufficient amount of sample 	ed out (ink, signed, etc)? in the appropriate place? the analysis requested?	YES.NONA

λ.

r L

Login Sample Receipt Checklist

Client: Small Business Group Inc.

Job Number: 490-84152-1

13

Login Number: 84152		List Source: TestAmerica Nashville	
List Number: 1			
Creator: Armstrong, Daniel			
Question	Answer	Comment	
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td> <td></td>	True		
The cooler's custody seal, if present, is intact.	True		
Sample custody seals, if present, are intact.	N/A		
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True	3.6C	
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
Is the Field Sampler's name present on COC?	True		
There are no discrepancies between the containers received and the COC.	True		
Samples are received within Holding Time.	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified.	N/A		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A		
Multiphasic samples are not present.	True		
Samples do not require splitting or compositing.	True		
Residual Chlorine Checked.	N/A		

ATTACHMENT A

NON-HAZARDOUS MANIFEST	IS EPA ID No. I	Vlanifest Doc	No.	2. Page 1	of					
3. Generator's Mailing Address: MCAS BEAUFORT LAUREL BAY HOUSING	Generator's Site Address (erator's Site Address (If different than mailing):			st Number MNA B. State (01519125 e Generator's ID				
BEAUFORT, SC 29904 4. Generator's Phone 843-879-0411				State denerator 315						
5. Transporter 1 Company Name	6. US EPA	6. US EPA ID Number			C. State Transporter's ID D. Transporter's Phone					
7. Transporter 2 Company Name	8. US EPA	ID Number			ansporter's IE orter's Phone)				
9. Designated Facility Name and Site Address HICKORY HILL LANDFILL 2621 LOW COUNTRY DRIVE	10. US EP	A ID Number		G. State F	acility ID					
RIDGELAND, SC 29936						H. State Facility Phone 843-987-46				
11. Description of Waste Materials			ontainers	13. Total	14. Unit	I Mic	c. Commen			
a. HEATING OIL TANK FILLED WITH SAND		No.	Туре	Quantity	Wt./Vol.		c. commen			
WM Profile # 1026555	C		1	2				- F.		
b. WM Profile #										
C.		-								
WM Profile #										
d.										
WM Profile #						<u></u>				
J. Additional Descriptions for Materials Listed Above		K. Disposal Location								
						Level				
		Grid								
15. Special Handling Instructions and Additional Inform	ation	1.1	5) (0-				7 m. 	line Line		
Purchase Order #	EMERGENCY C	ONTACT / PH	IONE NO .:	Ø-2-53	14	1	a.			
16. GENERATOR'S CERTIFICATE: I hereby certify that the above-described materials are	not hazardous wastes as de	fined by 40 (CFR Part 261	l or any appli	able state lav	v. have been	fully and	4		
accurately described, classified and packaged and are in Printed Name	proper condition for trans	portation acc	ording to ap	oplicable regu	lations.					
Thited Name	Signature Office					Month	Day	Year		
17. Transporter 1 Acknowledgement of Receipt of Mat Printed Name	the second s					1	_			
Printed Name	Signature					Month	Day	Yea		
18. Transporter 2 Acknowledgement of Receipt of Mat										
Printed Name	Signature					Month	Day	Yea		
 Certificate of Final Treatment/Disposal certify, on behalf of the above listed treatment facility applicable laws, regulations, permits and licenses on th 	as managed i	n compliance	e with all	0						
20. Facility Owner or Operator: Certification of receipt		s covered by	this manifes	st.						
Printed Name	Signature					Month	Day	Yea		
White- TREATMENT, STORAGE, DISPOSAL FACILITY COP Pink- FACILITY USE ONLY	PY Blue- GENERATO Gold- TRANSPOR			Ye	llow- GENERA	ATOR #1 COP	Ŷ			

Appendix C Regulatory Correspondence

August 3, 2016

Commanding Officer Attention: NREAO Mr. William A. Drawdy United State Marine Corps Air Station Post Office Box 55001 Beaufort, SC 29904-5001

RE: No Further Action Laurel Bay Underground Storage Tank Assessment Reports Dated July 2015, November 2015

Dear Mr. Drawdy:

The South Carolina Department of Health and Environmental Control (the Department) received the Underground Storage Tanks (USTs) Assessment Reports for the addresses listed in the attachment. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 et seq., as amended).

The Department has reviewed the referenced assessment reports and agrees there is no indication of soil or groundwater contamination on these properties and therefore no further investigation is required at this time.

Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at petruslb@dhec.sc.gov or 803-898-0294.

Sincerely,

XLRS

Laurel Petrus, Environmental Engineer Associate Bureau of Land and Waste Management

Cc: Russell Berry, EQC Region 8 (via email) Bryan Beck, NAVFAC MIDATLANTIC (via email) Craig Ehde (via email)

Attachment to: Petrus to Drawdy Subject: No Further Action Dated August 3, 2016

Laurel Bay Underground Assessment Reports for (28 addresses/29 tanks)

309 Ash	1001 Bobwhite
477 Dogwood Tank 2	1020 Foxglove
563 Dahlia	1063 Gardenia
659 Camellia	1065 Gardenia Tank 2
1213 Cardinal	1100 Iris Tank 3*
114 Banyan	1139 Iris
158 Cypress	1141 Iris Tank 2
459 Elderberry	1174 Bobwhite
611 Dahlia	1184 Bobwhite Tank 1
656 Camellia	1184 Bobwhite Tank 2
671 Camellia	1220 Cardinal
678 Camellia	1253 Dove
724 Bluebell	1332 Albatross
732 Bluebell	1387 Dove
934 Albacore	